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The Green Revolution 1950 to 2000

Population rose from 2.5 billion to 6 billion
genetic improvement — plant breeding

increased fertiliser use — artificial nitrogen
production

invention of pesticides — reduction of losses by
pests and diseases and improvements in food

safety

Increased mechanisation

improved agricultural efficiency

world wheat yields rose from 1.5 t/ha to 4 t/ha
decrease in amount spent on food — 30% to 10%
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Figure 17 Increases this century in world population, arable area,
the average yields of wheat and rice, the amount of N fertilizer used,
and the irrigated area of the world®®. ~



Wheat Yields in Egypt, France, and
the United Kingdom, 1960-2010
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The Plant Biotechnology Revolution 2000-2050

Population will grow from 6 billion to 9 billion
plant breeding improvements are plateauing
fertiliser use is falling

society demands a reduction in pesticide use
mechanisation improvements are plateauing
arable area per head of population is falling
arable area is shrinking

climate change will lead to further desertification,
and loss of low lying arable lands to sea level rises
eg Bangaladesh

Food production per unit area must double




Food Security

1 billion people today undernourished
Population rise by 40% expected by 2050
Urbanisation and affluence will continue to
rise

Food production must rise

. By 40% by 2030
. By 70% by 2050

The resource base is declining

The yield per unit are must rise
FAO




There 1s a clear need to increase productivity, and optimistically
there 1s great potential for both genetic and agronomic routes to
yield improvement. Greater yields with germplasm improvements,
Increasing intrinsic photosynthetic mechanisms, fine tuning
partitioning, and increasing resistance to stresses are all viable
approaches, particularly when combined with optimized use of
water and fertilizer; there 1s every prospect of doubling world wheat
yields. Increased yields will, however, come at a cost and greater
inputs are inevitable. Huge increases in water consumption,
increased nitrogen fertilizer use with associated environmental
impacts, and requirements for non-renewable mineral resources
such as potassium and phosphorus are to be expected. It 1s essential,
that 1n parallel with efforts to increase productivity, optimum
resource use efficiency 1s also considered. Without efficiency,
increased wheat production will not be sustainable

Hawkesford et al (2013), Prospects of Doubling Wheat Yields. Food and
Energy Security 2, 34-48




How does Plant Biotechnology
play a part in this?

Plant Tissue Culture

DNA Barcoding for Plant Breeding and
Ecology

Genomics > Transcriptomics > Proteomics >
Metabolomics > Phenomics

GMOQ'’s by Agrobacterium/Biolistics/siIRNA
Nanotechnology
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Plant molecular biology and
“Omic” technologies
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Genomics Transcripiomics Prolcomics Mclabolomics
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DNA Fingerprinting & Barcoding
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Applications of Plant Barcoding

Taxonomy — establishing species inter-relationships

Conservation - species identification in ecological threats, cataloguing natural
resources

Environmental Management — Indicator species

Legal investigation and enforcement — Forensics, Ecological crime

Health — identification of species with harmful attributes
Exploitation — agriculture, plant breeding, pharmaceutical plants

Horticulture — Stock identification




Barcode regions of plant

e DNA o
“*Discrimination
v Universality

“Robustness




Barcoding of entire Flora

2015 successfully

PhD graduate 2007 Barcoded all natural plant
species in Wales for

National Botanic Garden
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Marker Assisted Plant Breeding
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Transcriptomics
candidate gene identification
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Heatmap visualizing functional patterns in large scale
datsets. These patterns are brought into biological context
by data mining.




Proteomics — understanding
proteins expression patterns
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Figure S1 : Total proteins spots present in master gel of leaf protein in control (a)
and under drought stress (b). Low quality spots present in master gel of leaf protein
in control (c¢) and under drought stress (d) detected by PDQuest software.
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Metabolomics — understanding
complex interactions
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Understanding Abiotic Stress resistance
drought, salt, frost, heat

DREB2A CA (483)
drought (68)

NaCl (107)

|:| Induced by drought stress only

|:| Induced by high-salinity stress only

|:| Induced by HS stress only

I Induced by both drought and high-salinity stress
|:| Induced by both high-salinity and HS stress
- Induced by both drought and HS stress

| | Induced by all stresses




CBF Regulon

CBF
CRT/DRE

CBF

CRT/IDRE

Increasing frost
tolerance

(Membrane stabilisation)

Proteins

Cryoprotectants

(Sugar, Proling)
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The Abiotic Stress Transcription Factors

Drought, High salinity
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Phenomics — understanding
phenology (growth and development)
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Phenomics facilities
in Glasshouse and

Field
Generate Big Data
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GMO technologies

Established technology platforms
. Agrobacterium

. Gene gun

New technology platforms

. Gene/DNA editing (gene disruption, point mutation and
gene addition)

. CRISPR

. SRNAI

. Zinc Finger
. TALEN
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Confirmation of transformation

10 11

PCR analysis of the presence of the APX and SOD gene in putative
transgenic plant.

DNA molecular size marker (lane 1),

negative control (non-transformed cauliflower leaves) (lane 7 & 9),
transformed plants carrying SOD gene (lane 2, 4 & 5),

positive control (Agrobacterium DNA of SA or TA Strain) (lane3 & 6),
transformed plant carrying APX gene (lane 10),

positive control (Agrobacterium DNA of APX strains) (lane 11)
(lane 8) water.




Transgenic plant growing on
Salt containing medium

S




The additional gene(s) in the GM variety will confer
a measurable change on the variety such as:-

resistance to something — pest (caterpillars, aphids,
grazing insects), disease,

chemical (herbicide)

improvement in structural composition — bread-making
potential, oil composition, reduction in skin deterioration,
delay in over-ripening, ability to remain standing during
adverse weather.

change in physiology — stress resistance; improvement
In water use, improvement in nutrient use, improved
efficiency of production (photosynthesis, respiration).

improvement in levels of health-promoting

compounds — vitamins, anti-cancer compounds,
anti-oxidants

production of novel compounds — pharmaceutical
products.




GM cabbages protected against
caterpillars using Bt toxin




Ordinary — 'Gene silenced’ ——

10 days

45days 20 days

Image shows three sets of tomatoes. The ordinary control
tomatoes (extreme left) soften and shrivel up, while texture
of gene-silenced tomatoes remains intact for up to 45 days.

Photo credit: Asis Dalta, Subhra Chakraborty, National Institute
of Plant Genome Resoarch, New Dalhi







Benefits of GM crops since 1996

Global farm income benefitin 2010 $14B
Accumulated farm income 96-2012 $78.4B

Reduction in pesticide by 9% 448 Mkg a.i.

Reduction in environment impact quotient
17.9%

CO, emissions reductions in 2010 equivalent

to removal of 8.6M cars from the road -
reduced farm fuel use and sequestration




GM offers opportunities for environmentally
friendly, economical farming with more targeted use

of pesticides and reduced use of fossil fuels.

GM cotton (Bt), has led
to an 80% reduction in
Usage of pesticides.  FRGIIced Pestoids Applioations'
The farmers that grow = '
this cotton are reducing
the pesticide input into
the environment and
reducing the risks to
their own health.

7 Bt Cotton vs. Conventional -

ME A B it ol 1™ P ot B et ety ol I oot X3 G




Change in volume Farm income benefits

pesticide use from use of GM vars

million kg a.i. millions US$
1996-05

GM HT soy -51.4 11,686
GM HT maize -35.5 795
GM HT cotton -28.6 927
GM HT canola -6.5 893
GM BT maize -7.0 2,367
GM BT cotton -94.5 7,510
Others -0.1 66
TOTAL -224.3 24,244

Adapted from G. Brookes & P. Barfoot, 2006, GM Crops the first 10 years,
ISAAA Brief 36, ISAAA, Ithaca, NY, USA.

SOYBEANS




There are considerable potential
advantages of GM for infertile land

. Salt resistance — salt inundation and salinisation
through irrigation

. Drought resistance — arid and semi-arid conditions
create variable yields

. Frost resistance — extremely low winter temps reduce
capability for overwintered crops. Occasional spring
frosts damage blossomcrops




Next Generation GM plants/crops

Direct consumer benefits — healthier diets

-Micronutrients (Golden Rice — Phillipines
launch)

.Fatty acid composition (PlenishR & Vistive
GoldR ready for US and China launch)

.Resistant Starch
JAntioxidants




Next generation GM plants/crops

Beta- Golden 0 ug/g 37 ug/g Vit A deficiency
carotene Rice

lron Rice trace 6 fold Anaemia & Brain
development

Folate Rice 1 ug/g 17 ug/g Neural tube
development

Ascorbate Maize 18 ug/g 107 ng/g Scurvy

Omega-3 Rapeseed 12% 50% Cardiovascular
health

Amylose Wheat 28% 75% Diabetes & Bowel
disease

Anthocyanin  Tomato trace 2.83 ug/g  Anti-cancer




Golden Rice

. Golden Rice is a GM variety enriched in beta-
carotene -> vitamin A and is helping to
reduce VAD in many developlng countrles of

the world.




Farmaceutical plants — Golden Rice

Lack of sufficient vitamin A leads to Vitamin A Deficiency
(VAD)

VAD is endemic in 26 countries and serious in a further 13
countries worldwide

VAD affects over 124M children worldwide leading to
irreversible blindness.

UNICEF estimate there are 1.2 to 1.4M child deaths every
year due to VAD
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Briefs ; Global Status of Commercialized Biotech/GM Crops: 2014 | Slides & Tables

ISAAA Brief 49-2014: Slides & Tables

Global Area (Million Hectares) of Biotech
Crops, 2014: by Country

Biotech Mega Countries

1 USa 731
Z Brazir* 42 7
3 Argentina* 243
i ingra* 11.E
5 Canada 11.8
g. China*® 339
7. Pamaguay* 39
8. Pakiszan* 25
8. SouTh Afneas 2.7
10.  Uragquay™ 18
1. Bolivia® 10
12.  Philppines* 0.E
15. Australia oS
14 Burkina Fasop* s
15. Myanmar* 0.3
18. Maxico® 0.2
17. Spaln 0.1
18. Colombia* o1

&
In 2014, global area of biotech B S el

crops was 181.3 million hectares, Less than 30,000 hectares

E': ";:“l' PJ": - r: T;"'. 'i g Honduras* Romania
O A e e L Chile 5lovakla
mifliien hectanes Porfugal Cosra Rica®
Cuba* Banglagash*
Czech Republic

BT % / 11% Aszia
Americas

28 countries which have adopted
Increase over 20113 biotech crops
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Global Adoption Rates (%) for Principal T
Biotech Crops (Million Hectares, Million Acres), 2014 ....

M Acres
494
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395 B Biotech
346
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111
247
1498
140
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- =
0

82% 25%
Soybean Canola

Source: Clive James, 2014
Hectarage based on FAC Preliminary Data for 2012,
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Global Area of Biotech Crops, 1996 to 2014:
By Trait (Million Hectares, Million Acres)
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Do GM crops affect the environment per se?

Gene flow between farm crops and wild
plants is possible if the species are sexually
compatible. (natural Introgression)

Generally this is a very low frequency event.

Introgressed genes will only persist in the wild
population if they show a selective
advantage.

The possibility and consequence of any
such gene flow is a primary concern of
the regulatory authorities.




Ownership and Control

GM crop technology is principally owned by Private
Industry although there a lot of the scientific
breakthroughs are owned by Universities.

The UK and other western Governments systematically
sold off their plant breeding capabilities in the 1980’s and
1990’s.

The development of GM technology has been very
expensive and the Government has been keen to see
Private Industry bear this cost.

Private Industry requires a return on investment and now
needs GM varieties to start to show such a return.

This is a “developed” world’s technology

The greatest impact for this technology is in the
“developing” world who will have difficulty paying for it!

GM crops for the “developed” world’s needs will be where
the Private industry obtains its revenue

Government has a duty of Control and Regulation.




GM crop varieties are proving to be
dependable and safe

. GM crops are being grown worldwide on
approximately 148 million hectares
(nearly 1% of total world arable area)

Repeat sales of GM crop varieties

demonstrate that the varieties offer
advantages over competitor non-GM
varieties

There have been no instances of human
or animal health problems associated
with the consumption of these GM
products
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China’s investment in GM crops

. 2008 announced a new investment

. 15 year programme

. £2,600,000,000




Nanotechnology

. Nanoparticles can switch on genes

. Can induce pathogen resistance mechanisms —
could replace Fungicides

« Can induce abiotic stress resistance




Results. CBF expression under Mo effect.
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Nanotechnology

CARBON NANOTUBES DELIVER DNA

WICH INCORPORATE INTO THE PLANT
CELL STRUCTURE

CONH-Cellulase

H2N -Cellulase i
-




